
Environment International 158 (2022) 106964

Available online 1 November 2021
0160-4120/© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Per- and polyfluoroalkyl substance (PFAS) exposure, maternal metabolomic 
perturbation, and fetal growth in African American women: A 
meet-in-the-middle approach 

Che-Jung Chang a, Dana Boyd Barr a, P.Barry Ryan a, Parinya Panuwet a, Melissa M. Smarr a, 
Ken Liu b, Kurunthachalam Kannan c, Volha Yakimavets a, Youran Tan d, ViLinh Ly b, 
Carmen J. Marsit a, Dean P. Jones b, Elizabeth J. Corwin e, Anne L. Dunlop f, Donghai Liang a,* 

a Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA 
b Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA 
c Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA 
d Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA 
e School of Nursing, Columbia University, New York City, NY, USA 
f Woodruff Health Sciences Center, School of Medicine and Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA   

A R T I C L E  I N F O   

Handling Editor: Da Chen  

Keywords: 
High-resolution metabolomics 
PFAS 
Fetal growth 
Biomarkers 

A B S T R A C T   

Background: Prenatal exposures to per- and polyfluoroalkyl substances (PFAS) have been linked to reduced fetal 
growth. However, the detailed molecular mechanisms remain largely unknown. This study aims to investigate 
biological pathways and intermediate biomarkers underlying the association between serum PFAS and fetal 
growth using high-resolution metabolomics in a cohort of pregnant African American women in the Atlanta area, 
Georgia. 
Methods: Serum perfluorohexane sulfonic acid (PFHxS), perfluorooctane sulfonic acid (PFOS), perfluorooctanoic 
acid (PFOA), and perfluorononanoic acid (PFNA) measurements and untargeted serum metabolomics profiling 
were conducted in 313 pregnant African American women at 8–14 weeks gestation. Multiple linear regression 
models were applied to assess the associations of PFAS with birth weight and small-for-gestational age (SGA) 
birth. A high-resolution metabolomics workflow including metabolome-wide association study, pathway 
enrichment analysis, and chemical annotation and confirmation with a meet-in-the-middle approach was per-
formed to characterize the biological pathways and intermediate biomarkers of the PFAS-fetal growth 
relationship. 
Results: Each log2-unit increase in serum PFNA concentration was significantly associated with higher odds of 
SGA birth (OR = 1.32, 95% CI 1.07, 1.63); similar but borderline significant associations were found in PFOA 
(OR = 1.20, 95% CI 0.94, 1.49) with SGA. Among 25,516 metabolic features extracted from the serum samples, 
we successfully annotated and confirmed 10 overlapping metabolites associated with both PFAS and fetal growth 
endpoints, including glycine, taurine, uric acid, ferulic acid, 2-hexyl-3-phenyl-2-propenal, unsaturated fatty acid 
C18:1, androgenic hormone conjugate, parent bile acid, and bile acid-glycine conjugate. Also, we identified 21 
overlapping metabolic pathways from pathway enrichment analyses. These overlapping metabolites and path-
ways were closely related to amino acid, lipid and fatty acid, bile acid, and androgenic hormone metabolism 
perturbations. 
Conclusion: In this cohort of pregnant African American women, higher serum concentrations of PFOA and PFNA 
were associated with reduced fetal growth. Perturbations of biological pathways involved in amino acid, lipid 
and fatty acid, bile acid, and androgenic hormone metabolism were associated with PFAS exposures and reduced 
fetal growth, and uric acid was shown to be a potential intermediate biomarker. Our results provide opportu-
nities for future studies to develop early detection and intervention for PFAS-induced fetal growth restriction.  

* Corresponding author at: 1518 Clifton Rd, Atlanta, GA 30322, USA. 
E-mail address: donghai.liang@emory.edu (D. Liang).  

Contents lists available at ScienceDirect 

Environment International 

journal homepage: www.elsevier.com/locate/envint 

https://doi.org/10.1016/j.envint.2021.106964 
Received 30 June 2021; Received in revised form 22 October 2021; Accepted 26 October 2021   

mailto:donghai.liang@emory.edu
www.sciencedirect.com/science/journal/01604120
https://www.elsevier.com/locate/envint
https://doi.org/10.1016/j.envint.2021.106964
https://doi.org/10.1016/j.envint.2021.106964
https://doi.org/10.1016/j.envint.2021.106964
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envint.2021.106964&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Environment International 158 (2022) 106964

2

1. Introduction 

Reduced fetal growth is an indicator of adverse in utero environment 
conditions and has been associated with both short- and long-term 
health outcomes (Mayer & Joseph, 2013). Numerous studies have 
shown that fetal growth using either birth weight or small-for- 
gestational age (SGA) as endpoints can predict perinatal health risks 
such as morbidity and mortality (Madden et al., 2018; Wilcox, 2010), 
and even adult health risks such as metabolic syndrome, type II diabetes, 
and cardiovascular diseases (Barker, 2006; Risnes et al., 2011), sup-
porting the concept of the developmental origins of health and disease. 
Therefore, exposure to environmental chemicals at developmental pe-
riods which may influence fetal growth are particularly of concern 
(Heindel et al., 2015). 

Per- and polyfluorinated alkyl substances (PFAS), a group of indus-
trial compounds, have been frequently detected in both environmental 
and biological samples due to their wide range of applications and long 
biological half-lives (Houde et al., 2006; Lau et al., 2007). Prenatal ex-
posures to some PFAS, in particular perfluorooctanoic acid (PFOA), have 
been associated with lower birth weight and small-for-gestational age 
(SGA) birth in both animal and human studies (Bach et al., 2015; 
Johnson et al., 2014; Koustas et al., 2014; Lam et al., 2014; Souza et al., 
2020). Several potential biological mechanisms have been suggested, 
including the disruption of sex and thyroid hormones, changes in lipid 
metabolism, oxidative stress, and impaired placental functions (Abbott 
et al., 2007; Du, et al., 2013; Herrera & Ortega-Senovilla, 2010; Szilagyi 
et al., 2020). However, the exact biological mechanisms linking PFAS 
exposure to fetal growth have not yet been fully established. 

High-resolution metabolomics has served as a powerful tool to charac-
terize immediate cellular responses to different stressors from detected 
endogenous and exogenous metabolites in biological samples (Lankadurai 
et al., 2013; Miller & Jones, 2014). Therefore, metabolomics has been 
applied to improve the understanding of mode of action to certain expo-
sures, to detect biomarkers for preclinical outcomes, and to support the 
diagnosis and clinical decisions (Deng et al., 2019; Fearnley & Inouye, 
2016). Additionally, recent studies suggest using the meet-in-the-middle 
(MITM) approach to search for early biological effects and intermediate 
biomarkers in prospective cohort studies can inform the causal links or serve 
as markers for early responses (Chadeau-Hyam et al., 2011). Some epide-
miology studies have successfully utilized the MITM approach to examine 
metabolic signals linking air pollutant exposure to asthma, cardio- and 
cerebro-vascular diseases, and reproductive outcomes (Fiorito et al., 2018; 
Gaskins et al., 2021; Jeong et al., 2018), smoke exposure to adverse birth 
outcomes (Tan et al., 2021), serum PFAS to impaired glucose metabolism or 
the severity of nonalcoholic fatty liver disease (Alderete et al., 2019; Chen 
et al., 2020; Jin et al., 2020), and lifestyle factors to hepatocellular carci-
noma (Assi et al., 2015). 

Previous human observational studies have used metabolomics to 
examine metabolic perturbations associated with serum PFAS (Alderete 
et al., 2019; Chen et al., 2020; Hu et al., 2020; Jin et al., 2020; Kingsley 
et al., 2019; Koshy et al., 2017; Lu et al., 2019; Mitro et al., 2021; Sal-
ihovic et al., 2019; Yu et al., 2016) or fetal growth (Clinton et al., 2020; 
Heazell et al., 2012; Horgan et al., 2011). However, no study has utilized 
the MITM approach to aid in the understanding of possible biological 
pathways and intermediate biomarkers for PFAS-related fetal growth 
restriction. We hypothesized that PFAS would be associated with com-
mon pathways and metabolites that were also associated with fetal 
growth endpoints. Ultimately, our work can strengthen the inference of 
PFAS-fetal growth causality by validating previously proposed biolog-
ical processes in mechanistic studies. Moreover, the results provide 
opportunities for early detection and intervention to mitigate the health 
burden associated with PFAS exposures. 

2. Materials and methods 

2.1. Study population 

This study examined participants from the Emory University African 
American Vaginal, Oral, and Gut Microbiome in Pregnancy Study, which is 
a prospective birth cohort study that enrolled African American pregnant 
women. The participants were recruited during prenatal visits from the 
Emory Healthcare and Grady Health systems in metropolitan Atlanta, 
Georgia, in order to include a wider range of demographics. Inclusion 
criteria included self-reported U.S.-born African American, 18–40 years old, 
8–14 weeks gestation, singleton pregnancy, ability to communicate in En-
glish, and no chronic medical conditions. The details of the cohort were 
previously published (Brennan et al., 2019; Corwin et al., 2017). 

In this study, we retrieved information on 448 participants enrolled 
in the cohort between March 2014 and May 2018 with available PFAS 
measurements and information on birth outcomes of their offspring. We 
excluded 22 participants whose pregnancy ended with abortion (n = 6), 
stillbirth (n = 4), or delivered babies with congenital abnormalities (n =
12) in the analysis, resulting in 426 participants remaining in the ana-
lyses of PFAS and fetal growth. Additionally, 313 of these 426 partici-
pants (73.5%) had data on serum metabolomics measurements. All 
participants provided informed consent at enrollment. This study was 
reviewed and approved by the Institutional Review Board of Emory 
University (approval reference number 68441). 

2.2. Sample and data collection 

The collection of blood samples, clinical data, and questionnaire data 
has been described in detail previously (Corwin et al, 2017). Items 
relevant to this study are summarized below: 

Blood Samples Collection. Blood samples were collected from routine 
blood drawn via venipuncture. We only used the blood samples 
collected at 8–14 weeks gestation for serum PFAS and serum metab-
olomics measurements in this study. After sample collection, the sam-
ples were transported to the laboratory, processed to obtain the serum, 
and stored at − 80 ◦C for future analyses. 

Clinical Data. The data collection was completed by the research 
team using a standardized chart abstraction tool to ascertain the 
following characteristics, conditions, and birth outcomes: (1) Parity; (2) 
First prenatal body mass index (BMI), calculated from measured height 
and weight at the first prenatal visit between 8 and 14 weeks gestation 
and categorized according to accepted definitions (obesity ≥ 30 kg/m2, 
overweight 25–<30 kg/m2, healthy weight 18.5–<25 kg/m2, and un-
derweight < 18.5 kg/m2); (3) Gestational age at delivery was deter-
mined from the delivery record using the best obstetrical estimate 
(American College of Obstetricians and Gynecologists, 2014) based 
upon the date of delivery in relation to the estimated date of conception 
established by last menstrual period (LMP) and/or early ultrasound; (4) 
Birth weight was determined from the first weight measured in the de-
livery room. Birth weight percentiles based on gestational age at de-
livery and infant’s sex were derived using the population information 
from the U.S. natality files for singleton births in 2017 (Aris et al., 2019). 
Infants whose birth weight was < 10th percentile in the reference 
population were defined as having an SGA birth. 

Questionnaire Data. Sociodemographic survey based on maternal self- 
report and prenatal administrative record review was used to ascertain 
maternal age upon entry into the study, education, income-to-poverty 
ratio, prenatal health insurance type (categorized as Medicaid or pri-
vate insurance), marital and cohabiting status, and substance use (to-
bacco and marijuana). 

2.3. PFAS measurement 

Serum PFAS were analyzed at two laboratories. These two labora-
tories are part of the Children’s Health Exposure Analysis Resource 
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(CHEAR) laboratories, including Wadsworth Center/New York Univer-
sity Laboratory Hub (Wadsworth/NYU) and the Laboratory of Exposure 
Assessment and Development for Environmental Research (LEADER) at 
Emory University. In total, 342 and 84 samples were analyzed in 
Wadsworth/NTU and LEADER, respectively. Laboratories in CHEAR 
have participated in activities to produce harmonized measurements 
among them (Balshaw et al., 2017). Each serum sample was spiked with 
internal standards, treated by solid phase extraction, and quantified by 
liquid chromatography interfaced with tandem mass spectrometry (LC- 
MS/MS) for four PFAS – perfluorohexane sulfonic acid (PFHxS), per-
fluorooctane sulfonic acid (PFOS), PFOA, and perfluorononanoic acid 
(PFNA). Quantification of PFAS was performed using isotope dilution 
calibration. The details of analytical methods used in Wadsworth/NYU 
(Honda et al., 2018) and LEADER (Chang et al., 2021b) were described 
previously. Both laboratories have participated in and been certified by 
the German External Quality Assessment Scheme (http://g-equas.de/) 
twice annually for serum PFAS quantification. Good agreement of the 
measurements was obtained from 11 overlapped samples – Pearson 
correlation coefficients between 0.88 and 0.93 and relative percent 
differences (RPD) ranging from 0.12% to 20.2% (median 4.8%) 
(Table S1). 

2.4. High-resolution metabolomics 

Untargeted high-resolution metabolomics profiling was conducted at 
Emory Clinical Biomarker Laboratory using established protocol. Serum 
samples were first added with two sample volumes of ice-cold acetonitrile to 
precipitate proteins. The samples were then incubated on ice for 30 mins, 
centrifuged (at 14,000 g for 10 mins) to separate supernatant from precip-
itated proteins, and stored at 4 ◦C until analysis (Johnson et al., 2010). 
Extractants were then analyzed in triplicate by liquid-chromatography and 
Fourier-transform high-resolution mass spectrometry (LC-HRMS) (Dionex 
Ultimate 3000, Thermo Scientific Q-Exactive HF). 

Two chromatography types were applied the hydrophilic interaction 
liquid chromatography (HILIC) (Waters XBridge BEH Amide XP HILIC 
column; 2.1 × 50 mm2, 2.6 μm particle size) with positive electrospray 
ionization (ESI) and reverse phase (C18) chromatography (Higgins 
Targa C18 2.1 × 50 mm2, 3 μm particle size) with negative ESI. Analyte 
separation for HILIC was performed using water, acetonitrile, and 2% 
formic acid mobile phases under the following gradient elution: initial 
1.5 min period consisted of 22.5% water, 75% acetonitrile, and 2.5% 
formic acid, followed by a linear increase to 75% water, 22.5% aceto-
nitrile, and 2.5% formic acid at 4 min and a final hold of 1 min. Analyte 
separation for C18 was performed using water, acetonitrile, and 10 mM 
ammonium acetate mobile phases under the following gradient elution: 
initial 1 min period consisted of 60% water, 35% acetonitrile, and 5% 
ammonium acetate followed by a linear increase to 0% water, 95% 
acetonitrile, and 5% ammonium acetate at 3 min and held for the 
remaining 2 min. For both types of chromatography, mobile phase flow 
rate was 0.35 mL/min for the first min and increased to 0.4 mL/min for 
the final 4 min. Although the gradient elution starting at 60% aqueous 
condition in C18 column might miss some metabolites, which could be 
separated between 100% and 60% aqueous, these metabolites are likely 
to be better detected in the HILIC column. Thus, applying two chro-
matography types in this study can enhance the coverage of metabolic 
feature for each sample. The void volume ends at approximately 15 
seconds after injecting samples. LC-HRMS was operated in full scan 
mode at 120 k resolution and cover the range of mass-to-charge ratio 
(m/z) from 85 to 1,275. Tune parameters for sheath gas were 45 

(arbitrary units) for positive ESI and 30 for negative ESI. Auxiliary gas 
was set at 25 (arbitrary units) for positive ESI and 5 for negative ESI. 
Spray voltage was set at 3.5 kV for positive ESI and − 3.0 kV for negative 
ESI. Two internal standards which include pooled serum and standard 
reference material for human metabolites in plasma (NIST SRM 1950) 
were added at the beginning and the end of each batch of 20 samples for 
quality control and standardization (Liu et al., 2020; Johnson et al., 
2007). 

After instrument analysis, raw instrument files were converted to . 
mzML and metabolic signals were extracted and aligned by apLCMS 
with modification of xMSanalyzer, which enhanced data quality control 
and reduced batch effects (Uppal et al., 2013; Yu et al., 2009). To filter 
out the noise signals and optimize the metabolomics data quality, we 
excluded the metabolic features which were detected in < 15% of the 
samples, with coefficient of variation among technical replicates > 30%, 
and with Pearson correlation coefficient < 0.7. The intensities of the 
extracted metabolic features were then averaged across triplicates for 
future statistical analyses (Liang et al., 2018; Liang et al., 2019; Li et al., 
2021). 

2.5. Statistical analysis 

Descriptive analyses were performed for the serum PFAS concen-
trations including detection frequencies, geometric means (GMs), geo-
metric standard deviations (GSDs), and distribution percentiles. Serum 
PFAS concentrations below the limit of detections (LODs) were imputed 
with LOD/ 

̅̅̅
2

√
(Hornung & Reed, 1990). All the PFAS concentrations 

were log2-transformed to reduce the potential effects from outliers in the 
analyses. Additionally, Pearson correlations were calculated among 
log2-transformed PFAS concentrations. 

We investigated the associations of serum PFAS concentrations with 
birth weight (continuous; gram) and SGA birth (categorical; yes/no) by 
fitting multivariable linear regressions and logistic regressions, respec-
tively. Continuous birth weight was regressed on serum PFAS concen-
trations adjusting for maternal age (continuous; years), education 
(categorical; less than high school, high school, some college, college 
and above), parity (categorical; 0, 1, ≥2), BMI (categorical; <18.5, 
18.5–<25, 25–<30, ≥30 kg/m2), tobacco use (categorical; during 
pregnancy, not during pregnancy), marijuana use (categorical; during 
pregnancy, not during pregnancy), and infant’s sex (categorical; male, 
female). This analysis using birth weight as the dependent variable was 
restricted to the population of term births to remove the effect of length 
of gestation. The log odds of SGA birth were regressed on serum PFAS 
concentrations controlling for the same covariates except for infant’s sex 
because sex was already accounted for when defining SGA birth. To 
evaluate dose–response relationships, we used categorical PFAS con-
centration groups divided by quartiles to model birth weight and log 
odds of SGA birth. Test for trend across quartile groups were examined 
using the median serum PFAS concentrations of each group as a 
continuous variable. The covariates were selected by the guidance of 
directed acyclic graph to identify the potential confounders (Figure S1). 

The metabolome-wide association study (MWAS) was conducted to 
investigate the associations of global metabolomics with PFAS and fetal 
growth endpoints. The metabolic features in MWAS were analyzed 
without a priori knowledge of the actual chemical identities. Since in-
tensities of the metabolic features were right-skewed, log2-trans-
formation was conducted to normalize the data. We used the following 
models to evaluate the effects of PFAS exposure and the potential pre-
dictors of fetal growth endpoints: 

log2(Intensity) = β0 + β1log2(PFAS) + β2Age+ β3Education+ β4Parity+ β5BMI + β6Tobaccouse+ β7Marijuanause+ β8Sex+ ∊ (1)   
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where Intensity denotes the intensity of each metabolic feature. β0 
represents the intercept and β1− 8 are the coefficients corresponding to 
each covariate. The covariates having potential to alter metabolic ho-
meostasis and associate with either serum PFAS or fetal growth in this 
population were controlled in the models, including maternal age, ed-
ucation, parity, BMI, tobacco use, marijuana use, and infant’s sex. In-
fant’s sex was not included in the model (3) because sex was considered 
in defining the birth size. These three models were performed for each 
metabolic feature detected by two different analytical columns. We 
implemented the Benjamini-Hochberg procedure to correct for multiple 
comparison (Benjamini & Hochberg, 1995). All the analyses were per-
formed in R (version 3.6.1). 

2.6. Pathway enrichment analysis 

We used Mummichog (v1.0.10), a statistical application leveraging 
the organization of metabolic pathways and networks to predict the 
functional activity without upfront chemical identification. Briefly, 
Mummichog matches all the possible metabolites to the significant 
metabolic features (m/z), and searches for the pathways that can be 
constructed by these tentative chemicals. For HILIC column, the adducts 
M[1+], M + H[1+], M− H2O + H[1+], M + Na[1+], M + K[1+], M + 2H[2+], 
and M(C13) + 2H[2+] were considered. For C18 column, the adducts 
M− H[1-], M + Cl[1-], M + ACN-H[1-], M + HCOO[1-], M(C13)-H[1-], 
M− H2O− H[1-], and M + Na-2H[1-] were evaluated. The significance of 
pathways can then be calculated by Fisher’s exact test on the null dis-
tribution, which is estimated by permutation where the features were 
randomly drawn from the list of all the extracted metabolic features (Li 
et al., 2013). 

Although multiple-testing correction may provide stringent criteria 
to avoid false-positive candidates, it can also exclude weaker yet rele-
vant features, especially given the intercorrelated nature of metab-
olomics. Because we found a limited number of significant features at 
either 5% or 20% false discovery rate (FDR) thresholds, the cut-off for 
the significance was set as unadjusted p-value < 0.05 to include a suf-
ficient number of features in the pathway enrichment analyses 
(Table S2). The analyses were separately conducted for four PFAS, birth 
weight, and SGA birth by two different analytical columns. We created 
heat maps to show the enriched metabolic pathways associated with 
more than two PFAS and fetal growth endpoints, and shaded each cell 
based on the strength of the associations. 

2.7. Chemical annotation and confirmation 

To minimize the false positive discovery, we visually examined the 
extracted ion chromatographs (EICs) of each significant metabolic 

feature to differentiate true peak from noise (exhibiting clear gaussian 
peak shapes and signal-to-noise ratio above 3:1) (Yu & Jones, 2014). The 
features passing the examination were annotated and confirmed using 
the Metabolomics Standards Initiative criteria described below (Sumner 
et al., 2007). First, the features whose m/z (±10 ppm difference) and 
retention time (±10 seconds) matched the authentic compounds 
analyzed under identical experimental conditions were assigned with 
level 1 confidence. Second, additional metabolic features not assigned 
with level 1 confidence were annotated by xMSannotator. xMSannotator 
is a R package utilizing multicriteria clustering, retention time charac-
teristics, mass defect, and isotope/adduct patterns to assign identities to 
metabolic features based on multiple chemical databases (i.e., Human 
Metabolome Database (HMDB), Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG), the Toxin and Toxin Target Database (T3DB), and Lip-
idMaps). The adducts considered were the same as pathway enrichment 
analysis (refer to section 2.6) and the mass error range was set at 10 ppm 
(Uppal et al., 2017). We presented the features with level 2 confidence 
when the features were annotated with “high confidence” by xMSan-
notator and further confirmed by in-source fragmentation patterns from 
previous literature or library spectra at the retention time corresponding 
to the predominant fragment (Domingo-Almenara et al., 2019; Xue 
et al., 2020). 

2.8. Meet-in-the-middle (MITM) approach 

Fig. 1 shows the workflow of the MITM approach. We conducted 
MWAS and pathway enrichment analyses separately for serum PFAS 
concentrations and fetal growth endpoints and identified the over-
lapping pathways and metabolic features. The overlapping features 
were annotated and confirmed following the steps described in section 
2.7. These overlapping pathways and metabolites were then used to 
explore the potential biological mechanisms and intermediate bio-
markers linking PFAS concentrations to fetal growth endpoints. 
Compared with traditional mediation analysis, which requires strong 
underlying assumptions for the counterfactual framework, MITM was 
only used to detect the intersecting signals associated with exposure and 
outcome (Chadeau-Hyam et al., 2011; Pearl, 2014). 

2.9. Sensitivity analysis 

Although birth weight is an accepted proxy measurement of fetal 
growth and is strongly related to neonatal morbidity and mortality, the 
adjustment for length of gestation is suggested (Wilcox, 2010). More-
over, a previous study in the U.S found that shorter length of gestation 
was shown to be the strongest predictors of birth weight differences 
among African American infants (Morisaki et al., 2017). Thus, different 
methods separating the effect of length of gestation from fetal growth 
were examined in this study. We restricted the analyses to term births in 
the main analysis, whereas in sensitivity analysis, we included all births 
but additionally adjusted for gestational week at delivery as a covariate. 
Additionally, to evaluate the impact of using different cut-offs of p-value 
for the significance in the pathway enrichment analyses, we performed 

Birthweight = β0 + β1log2(Intensity) + β2Age + β3Education + β4Parity + β5BMI + β6Tobaccouse + β7Marijuanause + β8Sex + ∊ (2)   

ln
(

P(SGA)
1 − P(SGA)

)

= β0 + β1log2(Intensity)+ β2Age+ β3Education+ β4Parity+ β5BMI + β6Tobaccouse+ β7Marijuanause (3)   
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sensitivity analyses using p-value < 0.005, < 0.01, and < 0.05. 

3. Results 

3.1. Population characteristics 

Among 313 healthy African American women, the average age was 
24.9 years (standard deviation [SD] = 4.73), and the majority had high 
school education or less (n = 167; 54%), had income-to-poverty ratio <
100% (n = 134; 43%), and were supported by Medicaid (n = 248; 79%) 
instead of private medical insurance. The participants had lower edu-
cation and income levels compared to a similarly matched population 

(African American women aged 18–40 years) in U.S Census Bureau’s 
2014–2018 American Community Survey (45% of them had high school 
education or less, and 29% of them had income-to-poverty ratio <
100%) (Table 1) (Ruggles et al., 2021). In total, 56 participants (18%) 
delivered their infants preterm, and the average birth weight was 3,050 
g (SD = 611). There are 39 (13%) infants born with low birth weight 
(birth weight < 2,500 g), and 77 (25%) infants defined as SGA. Detailed 
information on the population characteristics is presented in Table 1. 
The characteristics among these 313 participants with metabolomics 
data were similar to the larger population (n = 426) in this study 
(Table S3). The four PFAS were detected with high frequencies 
(97–98%) among the subsets with metabolomics data. The GMs are 1.00 

Fig. 1. Workflow of the meet-in-the-middle (MITM) approach and the number of extracted or significant metabolic features in each analytical step. 
Overlapping significant features are the metabolic features associated with both PFAS and fetal growth endpoints. Validated features are the overlapping features 
exhibiting clear gaussian peak shapes and signal-to-noise ratio above 3:1 from their extracted ion chromatographs. Confirmed metabolites are the validated features 
successfully annotated and confirmed with chemical identities. (HILIC = hydrophilic interaction liquid chromatography column; C18 = C18 column; PFAS = per- and 
polyfluorinated alkyl substance; MWAS = metabolome-wide association study) 
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(GSD = 1.91), 1.97 (GSD = 2.13), 0.62 (GSD = 2.35), and 0.23 ng/mL 
(GSD = 2.34) for PFHxS, PFOS, PFOA, and PFNA, respectively 
(Table S4). Pearson correlation coefficients between these four PFAS 
ranged from 0.35 to 0.75 (all p-values < 0.05) (Table S5). 

3.2. Associations between serum PFAS concentrations and fetal growth 
endpoints 

Table 2 shows the associations of log2-transformed PFAS concen-
trations with birth weight and SGA birth. We found each log2-unit in-
crease in PFNA concentration was associated with higher odds for SGA 
birth (odds ratio [OR] = 1.32 [95 %CI 1.07, 1.63]), and the OR for the 
4th quartile (Q4) of PFNA (OR = 2.22 [95 %CI 1.12, 4.38]) was 
significantly higher than the reference group (Q1). We also observed 
increased odds of SGA birth per log2-unit increase in PFHxS, PFOA, and 
PFOS, but the results were not statistically significant. The ORs of the 
Q2, Q3, and Q4 of PFOA concentrations were significantly higher than 
Q1. Non-significant inverse associations were observed between log2- 
transformed serum PFAS concentrations and birth weight among term 
births. Lower birth weight was found in Q2 of PFOA (β = -126 g [95 %CI 
− 241, − 10]) than Q1. Additionally, dose–response relationships were 
observed in the associations of serum PFNA concentrations with SGA 
birth (p for trend = 0.04). The results of sensitivity analyses using 
different approaches to control for length of gestation for the birth 
weight models are presented in Table S6; the effect estimates did not 
materially change. 

Table 1 
Selected population characteristics in pregnant African American women in the 
Atlanta area, 2014–2018 (n = 313).  

Characteristics n (%) Characteristics n (%) 

Age (years)  BMI (kg/m2)  
Mean ± SD 24.9 ±

4.73 
< 18.5 9 (3%) 

18–25 166 
(53%) 

18.5–<25 121 
(39%) 

25–30 81 
(26%) 

25–<30 70 
(22%) 

30–35 54 
(17%) 

≥ 30 113 
(36%) 

≥ 35 12 (4%) Infant’s sex  
Educationa  Male 157 

(50%) 
Less than high school 49 

(16%) 
Female 156 

(50%) 
High school 118 

(38%) 
Marijuana use  

Some college 97 
(31%) 

Not during pregnancy 240 
(77%) 

College and above 49 
(16%) 

During pregnancy 73 
(23%) 

Income-to-poverty 
ratio (%)a,b  

Tobacco use  

< 100 134 
(43%) 

Not during pregnancy 267 
(85%) 

100–150 48 
(15%) 

During pregnancy 46 
(15%) 

150–300 48 
(15%) 

Birth weight (grams)  

≥ 300 38 
(12%) 

Mean ± SD 3050 
(611) 

Married or cohabiting  Low birth weight (LBW) 
(<2,500 g)  

Yes 147 
(47%) 

No 274 
(88%) 

No 166 
(53%) 

Yes 39 
(13%) 

Insurance  Birth weight percentile for 
gestational age  

Private 65 
(21%) 

Mean ± SD 35.9 ±
27.3 

Medicaid 248 
(79%) 

Small-for-gestational age (SGA) (<10th 
percentiles) 

Hospital  No 236 
(75%) 

Private (Emory) 123 
(39%) 

Yes 77 
(25%) 

Public (Grady) 190 
(61%) 

Gestational week at delivery  

Parity (#)  Mean ± SD 38.5 ±
2.64 

0 137 
(44%) 

Preterm birth (<37 
gestational weeks)  

1 88 
(28%) 

No 257 
(82%) 

≥ 2 88 
(28%) 

Yes 56 
(18%) 

Note: SD = standard deviation 
a Information of a similarly matched population (female, African American/ 

Black, and age 18–40 in U.S Census Bureau’s 2014–2018 American Community 
Survey: education (less than high school 8%, high school 37%, some college 
34%, college and above 20%); income-to-poverty ratio (%) (<100 29%, 
100–150 13%, 150–300 28%, ≥ 300 30%) (Ruggles et al., 2021) 

b The sample numbers do not be summed up to the total sample size due to 
missingness in some cases. 

Table 2 
Associations of serum PFAS with birth weight and small-for-gestational age 
(SGA) in pregnant African American women in the Atlanta area, 2014–2018.   

Birth weight (continuous; grams)a,b 

β (95 %CI) 
(n = 370) 

SGAc 

OR (95 %CI) 
(n = 426) 

PFHxS (ng/mL)   
Q1: < LOD-0.75 0 (Ref) 1.00 (Ref) 
Q2: 0.75–1.10 − 36 (-154, 83) 1.36 (0.71, 2.61) 
Q3: 1.10–1.53 5 (-112, 123) 1.35 (0.70, 2.61) 
Q4: 1.53–4.80 − 54 (-173, 66) 1.11 (0.57, 2.17) 
p for trendd 0.50 0.84 
Per log2-unit − 14 (-58, 31) 1.10 (0.85, 1.42) 
PFOS (ng/mL)   
Q1: < LOD-1.44 0 (Ref) 1.00 (Ref) 
Q2: 1.44–2.19 78 (-40, 196) 0.92 (0.47, 1.78) 
Q3: 2.19–3.24 20 (-98, 138) 1.32 (0.69, 2.53) 
Q4: 3.24–12.40 − 16 (-136, 105) 1.09 (0.56, 2.13) 
p for trendd 0.48 0.65 
Per log2-unit − 7 (-48, 34) 1.12 (0.88, 1.42) 
PFOA (ng/mL)   
Q1: < LOD-0.45 0 (Ref) 1.00 (Ref) 
Q2: 0.45–0.71 ¡126 (-241, ¡10)* 2.22 (1.10, 4.50)* 
Q3: 0.71–1.07 − 44 (-162, 73) 2.44 (1.21, 4.92)* 
Q4: 1.07–4.42 − 107 (-227, 13) 2.23 (1.10, 4.54)* 
p for trendd 0.23 0.06 
Per log2-unit − 14 (-49, 21) 1.20 (0.97, 1.49) 
PFNA (ng/mL)   
Q1: < LOD-0.16 0 (Ref) 1.00 (Ref) 
Q2: 0.16–0.27 − 41 (-159, 77) 1.73 (0.87, 3.43) 
Q3: 0.27–0.42 − 48 (-165, 69) 1.72 (0.87, 3.40) 
Q4: 0.42–2.27 − 106 (-227, 14) 2.22 (1.12, 4.38)* 
p for trendd 0.09 0.04* 
Per log2-unit –32 (-67, 3) 1.32 (1.07, 1.63)* 

Note: SGA = small-for-gestational age; OR = odds ratio; PFHxS = per-
fluorohexane sulfonic acid; PFOS = perfluorooctane sulfonic acid; PFOA =
perfluorooctanoic acid; PFNA = perfluorononanoic acid. 

a Adjusted for maternal age, education, BMI, parity, tobacco use, marijuana 
use, and infant’s sex. 

b Restricted to only term births (>37 gestational weeks and 0 day). 
c Adjusted for maternal age, education, BMI, parity, tobacco use, and mari-

juana use. 
d Median serum PFAS concentrations of each quartile group were used as a 

continuous exposure variable. 
* p-value < 0.05. 
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3.3. Maternal metabolome-wide association study (MWAS) on serum 
PFAS and fetal growth endpoints 

After data quality assurance, we successfully extracted 13,616 and 
11,900 metabolic features in the serum samples from 313 participants 
using the HILIC and C18 analytical columns, respectively. We conducted 
12 sets of MWAS (four PFAS and two fetal growth endpoints for two 
analytical columns). In total, when using p-value < 0.05 as the threshold 
of significance, we found 816, 974, 922, 1126, 693, and 742 significant 

features in HILIC column, and 797, 803, 709, 899, 586, and 673 features 
in C18 column associated with PFHxS, PFOS, PFOA, PFNA, birth weight, 
and SGA birth, respectively. The numbers of overlapping significant 
features associated with at least one PFAS and with either birth weight 
or SGA birth were 274 and 229 in HILIC and C18 column, respectively. 

Fig. 2. The enriched metabolic pathways significantly associated with ≥ 2 PFAS serum concentrations and fetal growth in pregnant African American 
women in the Atlanta area, 2014–2018 (n ¼ 313).(a) Heat map of p-values. Each cell was colored by the p-value of the association of each metabolic 
pathway and with either serum PFAS or fetal growth endpoints. Overlap size represents the average number of significant putative metabolites (p-value 
< 0.05) that were associated with either serum PFAS or fetal growth endpoints among each metabolic pathway. Pathway size represents the number of 
metabolites within each metabolic pathway. % is the percentage of overlap size to pathway size. These pathways were ordered by the number of sig-
nificance results. (b) The percentages of each class among all enriched metabolic pathways. (c) The class of enriched metabolic pathways. (Note: HILIC ¼
hydrophilic interaction liquid chromatography column; C18 ¼ C18 column; PFHxS ¼ perfluorohexane sulfonic acid; PFOS ¼ perfluorooctane sulfonic 
acid; PFOA ¼ perfluorooctanoic acid; PFNA ¼ perfluorononanoic acid; BW ¼ birth weight [the analyses were restricted to term births]; SGA ¼ small-for- 
gestational age; KEGG ¼ Kyoto Encyclopedia of Genes and Genomes) 
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Table 3 
Associations of significant confirmed biomarkers with both serum PFAS and fetal growth endpoints in pregnant African American women in the Atlanta area, 2014–2018 (n = 313).  

m/z RT 
(sec)a 

Metabolites HMDB ID Column Adduct Class β (95% CI) OR (95 % 
CI) 

PFHxSb PFOSb PFOAb PFNAb BWb,c SGAd 

Biomarker with level 1 confidence           
120.0025  60.2 Glycine HMDB00123 HILIC M + 2Na- 

He 
Amino acid 0.001 

(-0.052, 
0.054) 

0.02 
(-0.01, 0.04) 

0.04 
(-0.03, 0.11) 

0.15 
(0.01, 0.29)* 

¡171 
(-314, 
¡28)* 

2.71 
(0.63, 3.79) 

126.0220  57.7 Taurine HMDB00251 HILIC M + H Amino acid − 0.01 
(-0.09, 0.06) 

0.02 
(-0.01, 0.05) 

0.07 
(-0.03, 0.17) 

0.27 
(0.06, 0.47)* 

¡84 
(-188, ¡3) 
* 

1.76 
(0.99, 3.13) 

167.0208  18.8 Uric acid HMDB00289 C18 M− H Purine derivative − 0.02 
(-0.08, 0.05) 

0.026 
(-0.001, 0.053) 

0.10 
(0.02, 0.18)* 

0.18 
(0.01, 0.35)* 

¡161 
(-291, 
¡31)* 

1.75 
(0.89, 3.43) 

195.0661  23.7 Ferulic acid HMDB00954 C18 M− H Hydroxycinnamic 
acids 

− 0.14 
(-0.39, 0.11) 

− 0.10 
(-0.20, 0.01) 

¡0.43 
(-0.75, 
¡0.11)* 

− 0.22 
(-0.90, 0.46) 

− 8 
(-41, 26) 

1.23 
(1.01, 
1.50)* 

Biomarker with level 2 confidence           
217.1587  21.2 2-Hexyl-3-phenyl-2-propenal HMDB31736 HILIC M + H Cinnamaldehydes 0.11 

(0.03, 0.20) 
* 

0.05 
(0.01, 0.08)* 

0.09 
(-0.02, 0.20) 

0.13 
(-0.10, 0.36) 

− 57 
(-142, 27) 

1.78 
(1.06, 
2.99)* 

283.2634  181.6 Elaidic acid HMDB00573 HILIC M + H Long-chain fatty acids − 0.09 
(-0.27, 0.09) 

− 0.06 
(-0.14, 0.02) 

¡0.29 
(-0.53, 
¡0.05)* 

¡0.59 
(-1.07, 
¡0.10)* 

38 
(-4, 79) 

0.73 
(0.58, 
0.92)*   

Oleic acid HMDB00207 HILIC M + H Long-chain fatty acids         
Vaccenic acid HMDB03231 HILIC M + H Long-chain fatty acids       

367.1585  23.9 Dehydroepiandrosterone sulfate 
(DHEA-S) 

HMDB01032 C18 M− H Steroid hormone − 0.04 
(-0.19, 0.12) 

0.01 
(-0.06, 0.07) 

0.15 
(-0.05, 0.35) 

0.52 
(0.11, 0.93)* 

¡27 
(-54, ¡1)* 

1.20 
(0.90, 1.61)   

Testosterone sulfate HMDB02833 C18 M− H Steroid hormone       
369.1742  23.4 Androsterone sulfate HMDB02759 C18 M− H Steroid hormone − 0.13 

(-0.31, 0.04) 
− 0.02 
(-0.09, 0.06) 

0.14 
(-0.08, 0.36) 

0.55 
(0.09, 1.01)* 

–22 
(-42, ¡2)* 

1.15 
(0.88, 1.51) 

391.2878  260.9 Chenodeoxycholic acid 
(CDCA) 

HMDB00518 C18 M− H Bile acid − 0.001 
(-0.163, 
0.161) 

− 0.003 
(-0.070, 0.065) 

0.23 
(0.03, 0.44)* 

0.55 
(0.11, 0.98)* 

− 24 
(-77, 29) 

1.44 
(1.04, 
1.99)*   

Deoxycholic acid 
(DCA) 

HMDB00626 C18 M− H Bile acid         

Hyodeoxycholic acid 
(HDCA) 

HMDB00733 C18 M− H Bile acid         

Isoursodeoxycholic acid HMDB00686 C18 M− H Bile acid       
484.2847  22.3 Chenodeoxycholylglycine HMDB00637 C18 M + Cl Bile acid − 0.16 

(-0.49, 0.16) 
¡0.142 
(-0.281, 
¡0.002)* 

¡0.45 
(-0.85, 
¡0.04)* 

− 0.64 
(-1.49, 0.21) 

50 
(12, 87)* 

0.88 
(0.73, 1.07)   

Deoxycholylglycine  HMDB00631 C18 M + Cl  Bile acid         

Ursodeoxycholylglycine HMDB00708 C18 M + Cl  Bile acid       

Note: m/z = mass to charge ratio; RT (sec) = retention time (seconds); HMDB ID = Human Metabolome Database ID; OR = odds ratio; PFHxS = perfluorohexane sulfonic acid; PFOS = perfluorooctane sulfonic acid; PFOA 
= perfluorooctanoic acid; PFNA = perfluorononanoic acid; BW = birth weight; SGA = small-for-gestational age; HILIC = hydrophilic interaction liquid chromatography column; C18 = C18 column. 

a Void volume ends at 15 s. 
b Adjusted for maternal age, education, BMI, parity, tobacco use, marijuana use, and infant’s sex. 
c Restricted to term births (>37 gestational weeks and 0 day). 
d Adjusted for maternal age, education, BMI, parity, tobacco use, marijuana use. 
e Glycine [M + H] is outside of our mass range of detection and [M + 2Na-H] was confirmed by authentic glycine standards in the lab; thus, the intensity of [M + 2Na-H] instead of [M + H] is reported. 
* p-value < 0.05. 
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3.4. Overlapping enriched pathways associated with serum PFAS and 
fetal growth endpoints 

MWAS results were used to perform pathway enrichment analyses. 
The enriched metabolic pathways associated with ≥ 2 PFAS and fetal 
growth endpoints were summarized in Fig. 2. Similar enriched pathways 
were shown when using different cut-offs for significance (i.e., p-values 
< 0.005, < 0.01, and < 0.05) (data not shown). The results indicated 
that eight metabolic pathways, including linoleate, arginine and proline, 
histidine, nitrogen, alanine and aspartate, pyrimidine, tryptophan, and 
vitamin B3 metabolism were associated with ≥ 2 PFAS, birth weight, and 
SGA birth. Four pathways, de novo fatty acid biosynthesis, fatty acid 
activation, purine metabolism, and vitamin D3 metabolism, were linked 
to ≥ 2 PFAS and birth weight. Nine pathways, including four amino acid 
pathways (glutamate, lysine, methionine and cysteine, and aspartate 
and asparagine), three glycan pathways (keratan sulfate degradation, 
glycosphingolipid metabolism, and glycosphingolipid biosynthesis – 
ganglioseries), glycerophospholipid, and butanoate metabolism, were 
associated with ≥ 2 PFAS and SGA. The percentages of the number of 
significant putative metabolites (overlap size) to the number of metab-
olites within each pathway (pathway size) ranged from 30% to 86%. The 
results of pathway enrichment analyses associated with PFAS or fetal 
growth endpoints are presented in Figures S2 and S3, respectively. We 
found more enriched pathways in the birth weight models restricting 
participants to those with term births than in the models including all 
births. 

3.5. Overlapping metabolites associated with serum PFAS and fetal 
growth endpoints 

We largely decreased the possibility of false positive discovery by 
excluding ambiguous and noisy peaks after examining EICs. Only 69 and 
72 overlapping significant features passed the EIC examination — 75% 
and 69% of the features detected by HILIC and C18 columns were 
excluded. As shown in Table 3, the chemical identities of four over-
lapping metabolites, identified as biomarkers with level 1 confidence, 
were glycine, taurine, uric acid, and ferulic acid. Glycine, taurine, and 
uric acid were positively associated with PFNA and inversely associated 
with birth weight, and uric acid was additionally associated with serum 
PFOA concentrations. Increased ferulic acid intensities were inversely 
associated with PFOA concentrations, and positively associated with 
odds of SGA birth. Glycine [M + H] (m/z 76.1) is outside of our mass 
range of detection (m/z 85 to 1,275) and [M + 2Na-H] was confirmed by 
authentic glycine standards in the lab; thus, the intensity of [M + 2Na- 
H] instead of [M + H] is reported for glycine. 

Six features were annotated as metabolites with level 2 confidence 
including 2-hexyl-3-phenyl-2-propenal, unsaturated fatty acids C18:1 (i. 
e., elaidic acid, oleic acid, or vaccenic acid), androgenic hormone sulfate 
conjugates (i.e., dehydroepiandrosterone sulfate [DHEA-S] or testos-
terone sulfate, and androsterone sulfate), parent bile acid (i.e., cheno-
deoxycholic acid [CDCA], deoxycholic acid [DCA], hyodeoxycholic acid 
[HDCA], or isoursodeoxycholic acid), and bile acid-glycine conjugate (i. 
e., chenodeoxycholylglycine, deoxycholylglycine, or ursodeox-
ycholylglycine). The results of sensitivity analyses between term and all 
births of birth weight models are presented in Table S7, where the di-
rectionalities of coefficients were consistent across the two models. 

4. Discussion 

4.1. Maternal serum PFAS associated to reduced fetal growth 

We found that PFNA concentrations were associated with higher 
odds of SGA birth with a monotonic dose–response relationship. Similar 
evidence was observed with PFOA despite the borderline significance. 
However, inconsistent results were observed with serum PFHxS and 
PFOS. Previous systematic reviews and meta-analyses suggest that 

exposures to PFOA and PFOS may limit fetal growth in both human and 
animal studies (Bach et al., 2015; Johnson et al., 2014; Koustas et al., 
2014; Lam et al., 2014; Souza et al., 2020). Additionally, reduced fetal 
growth was also observed with higher PFHxS and PFNA concentrations 
despite their paucity of data and/or consistency in results in the litera-
ture (Callan et al., 2016; Kashino et al., 2020; Maisonet et al., 2012). 
These inconsistent results might be due to heterogeneity of study de-
signs, choice of fetal growth endpoints, study populations, sample sizes, 
or different exposure ranges. 

We recognize that the associations observed in this analysis may 
differ by fetal growth endpoints, given the difference in interpretation of 
each endpoint. Specific to birth weight and SGA in the context of fetal 
growth, there is a distinction between infants who are constitutionally 
small and those who are growth restricted as the result of extraneous 
factors. Additionally, it is worth noting that SGA percentiles for this 
cohort of African American infants were based on a reference population 
for which there was significant variation, which may limit the inter-
pretation of our findings. 

4.2. Amino acid metabolism contributing to PFAS-fetal growth 
relationship 

Several amino acid pathways were associated with PFAS and fetal 
growth endpoints, including arginine and proline, histidine, alanine and 
aspartate, tryptophan, glutamate, lysine, methionine and cysteine, and 
aspartate and asparagine in this study. We also observed that increased 
glycine and taurine intensities were associated with higher PFNA con-
centrations and lower birth weights. Previous human studies have 
shown similar perturbed amino acid pathways associated with PFAS 
exposure (Alderete et al., 2019; Chen et al., 2020; Hu et al., 2020; Jin 
et al., 2020; Kingsley et al., 2019; Lu et al., 2019; Mitro et al., 2021; 
Salihovic et al., 2019). A mouse study indicated that PFOS exposure can 
reduce the expression levels of amino acid transporter on the placenta, 
leading to decreased concentrations of amino acids and glucose ana-
logues in the placentas and fetal livers (Wan et al., 2020). A decreased 
amino acid concentration in the placentas and fetuses may suggest an 
increased concentration in maternal serum. Accordingly, amino acid 
concentrations among the pregnant women with an SGA fetus were 
higher than those carrying an appropriate-for-gestational (AGA) fetus 
(Cetin et al., 1996; Neerhof & Thaete, 2008). Amino acids are vital 
nutrients for fetal growth and development; thus, the dysfunction of 
placental transport function induced by PFAS exposure may, in part, 
impact fetal growth. 

4.3. Lipid and fatty acid metabolism contributing to PFAS-fetal growth 
relationship 

We found that lipid and fatty acid metabolism perturbation, one of 
the most pronounced effect of PFAS exposure, could mediate the PFAS- 
fetal growth relationship. We identified several pathways of lipid and 
fatty acid metabolisms (i.e., linoleate metabolism, de novo fatty acid 
biosynthesis, fatty acid activation, glycerophospholipid metabolism), 
glycosphingolipid biosynthesis and metabolism, butanoate metabolism 
(a pathway for short-chain fatty acids and alcohols), and unsaturated 
fatty acids C18:1 associated with both PFAS concentrations and fetal 
growth endpoints. These metabolic perturbations were largely consis-
tent with the previous studies focusing on either PFAS concentrations or 
fetal growth outcomes (Alderete et al., 2019; Bobiński et al., 2013; Chen 
et al., 2020; Heazell et al., 2012; Herrera & Ortega-Senovilla, 2010; 
Horgan et al., 2011, 2011; Kingsley et al., 2019; Liu et al., 2017; Sali-
hovic et al., 2019). Lipid and fatty acid metabolism were regulated by 
nuclear receptors such as peroxisome proliferator-activated receptor 
subtypes (e.g., PPARα, PPARβ, and PPARγ), which are also substantially 
involved in physiological processes related to fetal growth including 
inflammatory responses, oxidative pathways, energy homeostasis, 
placentation, and trophoblast differentiation (Grygiel-Górniak, 2014; 
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Szilagyi et al., 2020). PFAS have been shown to interact with these PPAR 
subtypes as potential ligands, which promote fatty acid accumulation 
and influence adipocyte differentiation (Bjork et al., 2011; Blake & 
Fenton, 2020; Jacobsen et al., 2018; Yamamoto et al., 2015). Addi-
tionally, PFAS exposure may influence gene expressions of mitochon-
drial β-oxidation, which breaks down fatty acid and produces acetyl-CoA 
in the energy generation process (Jacobsen et al., 2018; Wan et al., 
2012). 

Different maternal lipid and fatty acid profiles were observed be-
tween the women with normal and adverse pregnancy and birth out-
comes in the previous studies (Heazell et al., 2012; Horgan et al., 2011; 
Liu et al., 2017; Paules et al., 2020; Starling et al., 2014). Changes in 
sphingolipid, glycerophospholipids, phospholipids, carnitine, and fatty 
acid were found among the mother with SGA birth, preterm delivery, or 
the other adverse birth outcomes (Heazell et al., 2012; Horgan et al., 
2011). Several explanations were proposed including placental 
dysfunction, and oxidative stress and inflammation responses induced 
by PPARs signaling (Ganss, 2017; Gupta et al., 2005; Herrera & Ortega- 
Senovilla, 2010; Paules et al., 2020; Szilagyi et al., 2020). Additionally, 
the alteration of lipid metabolism may subsequently lead to pre-
eclampsia via endothelial damage or oxidative stress (Llurba et al., 
2005), and then may impact fetal growth (Ødegård et al., 2000). 
Collectively, the results from our and the previous studies have shown 
that lipid metabolism plays a vital role mediating the associations be-
tween PFAS exposure and fetal growth. 

4.4. Bile acid metabolism contributing to PFAS-fetal growth relationship 

Previously, exposure to PFAS was associated with downregulation of 
7-alpha-hydroxylase (CYP7A1) expression, resulting in decreased bile 
acid synthesis but increased reabsorption from the intestine into liver 
(Beggs et al., 2016; Behr et al., 2020; Salihovic et al., 2019). PFOA and 
PFOS exposures were associated with altered bile acid profiles and 
changed bile canalicular morphology, suggesting a potential link to 
cholestasis. Moreover, bile acid conjugation with glycine and taurine, a 
process of detoxification before excretion, may be downregulated by 
PFAS exposure (Behr et al., 2020). These effects could explain the as-
sociations of serum PFAS with elevated parent bile acids and decreased 
bile acid conjugates in our analyses. 

Gestational cholestasis has been associated with increased risks of 
adverse pregnancy and birth outcomes such as preeclampsia (Raz et al., 
2015), preterm delivery (Cui et al., 2017), and intrauterine fetal death 
(Glantz et al., 2004). Even among the women without diagnosed 
gestational cholestasis, higher serum bile acid concentrations were also 
linked to higher risk of SGA birth (Li et al., 2020). Since bile acids can 
stimulate inflammatory response (Li et al., 2017; Shao et al., 2017), 
induce oxidative stress and apoptosis (Monte et al., 2009), and inhibit 
miRNA expressions on the placentas (Krattinger et al., 2016), higher 
circulating levels may result in reduced fetal growth (Amarilyo et al., 
2011; Chen et al., 2019). We found that SGA birth was associated with 
increased parent bile acids and decreased bile acid conjugates (less toxic 
bile acids), suggesting a negative impact of parent bile acids on fetal 
growth. Additionally, bile acid metabolism is closely tied to lipid, 
glucose, and energy metabolism, which may be an important mediating 
mechanism for PFAS-outcome relationships. 

4.5. Androgenic hormones disruption contributing to the PFAS-fetal 
growth relationship 

We observed that PFNA concentrations were associated with higher 
intensities of androgenic hormone conjugates (i.e., dehydroepiandros-
terone sulfate (DHEA-S), testosterone sulfate, and androsterone sulfate), 
and higher intensities of the conjugates predicted lower birth weights. 
Dehydroepiandrosterone (DHEA) and DHEA-S are both precursors of sex 
hormones and can be transformed to androsterone, testosterone, and the 
other sex hormones. Previous studies have shown that PFAS can disturb 

endocrine systems via interfering steroidogenesis, expression of endo-
crine related-genes, androgen receptors, and cholesterol metabolism 
through PPARα activation (Di Nisio et al., 2019; Du, et al., 2013; Lau 
et al., 2007). In previous epidemiological studies, no association of 
testosterone with PFAS was found in female adults in all age groups 
(Lewis et al., 2015), but positive associations with PFOA and PFHxS 
were observed among postmenopausal women. (Wang et al., 2021). 
Inverse associations of testosterone with PFOS were reported among 
girls at 6–9 years of age from the C8 Health Project (Lopez-Espinosa 
et al., 2016) and among female adolescents in Taiwan (Tsai et al., 2015). 
For dehydroepiandrosterone, significant positive and negative associa-
tions were found in cord blood with maternal serum PFOS and PFOA 
concentrations, respectively (Goudarzi et al., 2017). Testosterone and 
some sex hormones may regulate PFAS levels by interacting with renal 
transporters (Kudo et al., 2002; Lee et al., 2010); thus, the relationship 
could be more complicated than the current findings in the epidemio-
logical studies. Further studies are warranted to clarify the mechanisms 
due to the conflicting results and potential reverse causality. 

Previous animal models have shown that prenatal exposure to 
testosterone in early gestation was associated with reduced birth size 
and catch-up growth during early life (Manikkam et al., 2004; Smith 
et al., 2010). Several biological mechanisms were reported — maternal 
testosterone levels can modify maternal energy metabolism (Carlsen 
et al., 2006), decrease the expression of amino acid transporter on the 
placentas (Sathishkumar et al., 2011; Wan et al., 2020), and cause 
vascular dysfunction (Kumar et al., 2018; Vijayakumar et al., 2013), 
suggesting decreased nutrient supplies from mothers to their fetuses. 
Alternatively, androgenic hormones can cross the placenta and directly 
affect fetal energy metabolism and fetal growth (Dell’Acqua et al., 
1966). It is worth noting that the previous studies have mainly focused 
on testosterone but not DHEA, androsterone, or their conjugates. 
Although the evidence of androgenic hormones disruption was pre-
sented, the results of conjugates were less comparable to the existing 
findings. 

4.6. Uric acid as an intermediate biomarker for PFAS-fetal growth 
relationship 

Uric acid is positively associated with PFAS concentrations and 
inversely associated with birth weight in our analyses. The associations 
between PFAS exposure and increased uric acid concentrations were 
published in epidemiological studies (Geiger et al., 2013; Gleason et al., 
2015; Mitro et al., 2021; Salihovic et al., 2019; Shankar et al., 2011; 
Steenland et al., 2010). Two possible mechanisms were discussed. First, 
PFAS exposure could induce oxidative stress primarily through dysre-
gulation of PPAR and upregulation of NF-E2-related factor 2 (Nrf2), 
subsequently resulting in increased serum uric acid concentrations 
(Abbott et al., 2007; Eriksen et al., 2010; Patterson et al., 2003; Stanifer 
et al., 2018; Wielsøe et al., 2015; Zeng et al., 2019). Second, because 
PFAS and uric acid share the same proximal renal transporters (Johnson 
et al., 2018; Stanifer et al., 2018), increased PFAS concentrations may 
lead to decreased uric acid secretion, and in turn, elevated serum uric 
acid concentrations. However, this finding should be interpreted with 
caution due to the possibility of reverse causation (Steenland et al., 
2010). 

Elevated maternal uric acid has been a predictor and a pathogenic 
factor for adverse pregnancy and birth outcomes (Akahori et al., 2012; 
Hawkins et al., 2012; Laughon et al., 2009, 2011; Ryu et al., 2019; Wu 
et al., 2012). Increased maternal uric acid may cause noninfectious 
placental inflammation (Wu et al., 2012), oxidative stress (Bainbridge 
et al., 2009), inhibition of amino acid transport on the placentas 
(Bainbridge et al., 2009), and dysfunction of endothelial and trophoblast 
cells (Bainbridge & Roberts, 2008; Gaubert et al., 2018), which could 
contribute to adverse birth outcomes including reduced fetal growth. 
Collectively, we found that uric acid may reflect inflammation, oxidative 
stress, or placental dysfunction partially induced by PFAS exposure and 
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serve as a predictor for reduced birth weight. 

4.7. Other overlapping metabolic pathways and metabolites 

We found two cofactor and vitamin metabolic pathways, including 
vitamin B3 and D3, associated with both PFAS concentrations and fetal 
growth endpoints. PFAS exposure has shown the ability to interfere with 
vitamin D metabolism previously (Chang et al., 2021a; Di Nisio et al., 
2020; Etzel et al., 2019; Khalil et al., 2018). Vitamin D plays an 
important role of fetal growth on skeletal development, placental 
function, oxidative stress, inflammatory response, and metabolism of 
glucose and lipids (Brannon, 2012; Lo et al., 2019), and vitamin D 
deficiency has been linked to lower birth weight and higher risk of SGA 
(Leffelaar et al., 2010). Additionally, vitamin B3 may work as an anti-
oxidant for fetal growth improvement and preeclampsia treatment 
(Salcedo-Bellido et al., 2017). 

We also observed two exogenous metabolites (ferulic acid and 2- 
hexyl-3-phenyl-2-propenal) that were associated with PFAS concentra-
tions and fetal growth endpoints but are unlikely on the causal pathway 
of the PFAS-fetal growth relationship. More specifically, the inverse 
association between PFOA concentration and ferulic acid, a naturally 
occurring chemical in plants, could be due to dietary preference as PFAS 
exposure was linked to more fish and meat consumptions (Papadopou-
lou et al., 2019; Tittlemier et al., 2007). Accordingly, the positive as-
sociation between ferulic acid and SGA birth could be attributed to the 
preference of plant-based food consumption during pregnancy (Kesary 
et al., 2020). 2-hexyl-3-phenyl-2-propenal, a fragrance and flavoring 
agent in many consumer products (Kim et al., 2018), was positively 
associated with PFHxS and PFOS concentrations, which might be 
explained by the use of consumer products (Chang et al., 2021b; 
Kotthoff et al., 2015). The positive association between 2-hexyl-3- 
phenyl-2-propenal and SGA birth might be confounded by the factors 
correlated to the use of consumer products through co-exposure to other 
chemicals. 

4.8. Strength and limitations 

The strengths of our study include the use of untargeted metab-
olomics techniques to explore global metabolic changes and a novel 
MITM approach to identify potential biological mechanisms and inter-
mediate biomarkers linking exposure to outcome. Second, we assessed 
different approaches to control for length of gestation in this study. 
Although most results were similar, the enriched pathways were 
somewhat distinct (Figure S3), suggesting a possibility of different 
metabolic pathways associated with fetal growth among women with 
preterm and term deliveries. Third, we were able to ascertain quality 
clinical outcomes by using early pregnancy gestational age dating and 
medical chart abstraction. 

We also acknowledge several limitations. First, due to the cross- 
sectional nature of the associations between PFAS concentrations and 
metabolomic features, it is difficult to derive causal relationships. Sec-
ond, dietary and some lifestyle variables were not considered in this 
study. Since adjusting for more variables might introduce unknown 
biasing paths and cause issues of overadjustment, we only included a 
basic set of covariates in the MWAS analyses. Third, only four PFAS were 
included in the present study. It is possible that other PFAS or co- 
exposed chemicals may also yield similar results. Fourth, we use raw, 
but not multiple-testing corrected, p-values for pathway enrichment 
analyses, which could lead to an increased risk of false positive results. 
However, pathway enrichment analysis by mummichog has been proven 
to return stable results when varying the cutoffs for significance (Li 
et al., 2013). Another potential limitation is the use of proxies (i.e., birth 
weight and SGA) instead of ‘gold’ standard (i.e., repeated ultrasound 
measurements of fetal anthropometrics) for fetal growth assessment in 
this study (Smarr et al., 2013). Still, these commonly utilized proxies of 
fetal growth allow for comparison of results in our cohort with the other 

studies. Finally, the findings from this pregnant African American 
women cohort might reduce generalizability to a broader population. 
Nevertheless, we observed consistent perturbations in similar metabolic 
pathways previously reported in other populations (Kingsley et al., 
2019; Alderete et al., 2019; Chen et al., 2020). 

5. Conclusions 

To our knowledge, this is the first study to investigate the interre-
lationship between serum PFAS concentrations, maternal metabolomic 
perturbation, and fetal growth. We report associations of maternal 
serum PFOA and PFNA concentrations with reduced fetal growth in this 
African American women population. The underlying biological mech-
anisms of the PFAS-fetal growth relationship were shown to be amino 
acid, lipid and fatty acid, and bile acid metabolisms, as well as andro-
genic hormone disruption. Uric acid was identified as a potential in-
termediate biomarker representing the early responses of PFAS exposure 
and predicting reduced fetal growth. These biological mechanisms were 
consistent with previous experimental and observational studies, which 
strengthen the causal link of the existing associations between PFAS and 
reduced fetal growth. Additionally, the mechanisms and the potential 
intermediate biomarker presented in this study are warranted for future 
investigation in targeted and more controlled studies, which may help to 
develop early detection and intervention in public health or clinical 
settings. 
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Gallán, P., Cabero, L., Gratacós, E., 2005. Atherogenic lipoprotein subfraction profile 
in preeclamptic women with and without high triglycerides: different 
pathophysiologic subsets in preeclampsia. Metabolism 54 (11), 1504–1509. https:// 
doi.org/10.1016/j.metabol.2005.05.017. 

Li, L., Chen, W., Ma, L., Liu, Z.B., Lu, X., Gao, X.X., Liu, Y., Wang, H., Zhao, M., Li, X.L., 
Cong, L., Xu, D.X., Chen, Y.H., 2020. Continuous association of total bile acid levels 
with the risk of small for gestational age infants. Scientific Reports 10 (1), 9257. 
https://doi.org/10.1038/s41598-020-66138-y. 

Li, M., Cai, S.-Y., Boyer, J.L., 2017. Mechanisms of bile acid mediated inflammation in 
the liver. Molecular Aspects of Medicine 56, 45–53. https://doi.org/10.1016/j. 
mam.2017.06.001. 

Li, S., Park, Y., Duraisingham, S., Strobel, F. H., Khan, N., Soltow, Q. A., Jones, D. P., & 
Pulendran, B. (2013). Predicting Network Activity from High Throughput 
Metabolomics. PLOS Computational Biology, 9(7), e1003123. https://doi.org/ 
10.1371/journal.pcbi.1003123. 

Li, Z., Liang, D., Ye, D., Chang, H.H., Ziegler, T.R., Jones, D.P., Ebelt, S.T., 2021. 
Application of high-resolution metabolomics to identify biological pathways 
perturbed by traffic-related air pollution. Environmental Research 193, 110506. 
https://doi.org/10.1016/j.envres.2020.110506. 

Liang, D., Moutinho, J.L., Golan, R., Yu, T., Ladva, C.N., Niedzwiecki, M., Walker, D.I., 
Sarnat, S.E., Chang, H.H., Greenwald, R., Jones, D.P., Russell, A.G., Sarnat, J.A., 
2018. Use of high-resolution metabolomics for the identification of metabolic signals 
associated with traffic-related air pollution. Environment international 120, 
145–154. https://doi.org/10.1016/j.envint.2018.07.044. 

Liang, D., Ladva, C.N., Golan, R., Yu, T., Walker, D.I., Sarnat, S.E., Greenwald, R., 
Uppal, K., Tran, ViLinh, Jones, D.P., Russell, A.G., Sarnat, J.A., 2019. Perturbations 
of the arginine metabolome following exposures to traffic-related air pollution in a 
panel of commuters with and without asthma. Environment international 127, 
503–513. https://doi.org/10.1016/j.envint.2019.04.003. 

Liu, K. H., Nellis, M., Uppal, K., Ma, C., Tran, V., Liang, Y., ... & Jones, D. P. (2020). 
Reference standardization for quantification and harmonization of large-scale 
metabolomics. Analytical chemistry, 92(13), 8836-8844. https://doi.org/10.1021/ 
acs.analchem.0c00338. 

Liu, J., Liu, G., Li, Z., 2017. Importance of metabolomics analyses of maternal parameters 
and their influence on fetal growth (Review). Experimental and Therapeutic 
Medicine 14 (1), 467–472. https://doi.org/10.3892/etm.2017.4517. 

Lo, T.-H., Wu, T.-Y., Li, P.-C., Ding, D.-C., 2019. Effect of Vitamin D supplementation 
during pregnancy on maternal and perinatal outcomes. Tzu-Chi Medical Journal 31 
(4), 201–206. https://doi.org/10.4103/tcmj.tcmj_32_19. 

Lopez-Espinosa, M.-J., Mondal, D., Armstrong, B.G., Eskenazi, B., Fletcher, T., 2016. 
Perfluoroalkyl Substances, Sex Hormones, and Insulin-like Growth Factor-1 at 6–9 
Years of Age: A Cross-Sectional Analysis within the C8 Health Project. 
Environmental Health Perspectives 124 (8), 1269–1275. https://doi.org/10.1289/ 
ehp.1509869. 

Lu, Y., Gao, K.e., Li, X., Tang, Z., Xiang, L.i., Zhao, H., Fu, J., Wang, L., Zhu, N., Cai, Z., 
Liang, Y., Wang, Y., Jiang, G., 2019. Mass Spectrometry-Based Metabolomics 
Reveals Occupational Exposure to Per- and Polyfluoroalkyl Substances Relates to 
Oxidative Stress, Fatty Acid β-Oxidation Disorder, and Kidney Injury in a 
Manufactory in China. Environmental Science & Technology 53 (16), 9800–9809. 
https://doi.org/10.1021/acs.est.9b0160810.1021/acs.est.9b01608.s001. 

Madden, J.V., Flatley, C.J., Kumar, S., 2018. Term small-for-gestational-age infants from 
low-risk women are at significantly greater risk of adverse neonatal outcomes. 
American Journal of Obstetrics and Gynecology 218 (5), 525.e1–525.e9. https://doi. 
org/10.1016/j.ajog.2018.02.008. 

Maisonet, M., Terrell, M.L., McGeehin, M.A., Christensen, K.Y., Holmes, A., Calafat, A. 
M., Marcus, M., 2012. Maternal Concentrations of Polyfluoroalkyl Compounds 
during Pregnancy and Fetal and Postnatal Growth in British Girls. Environmental 
Health Perspectives 120 (10), 1432–1437. https://doi.org/10.1289/ehp.1003096. 

Manikkam, M., Crespi, E.J., Doop, D.D., Herkimer, C., Lee, J.S., Yu, S., Brown, M.B., 
Foster, D.L., Padmanabhan, V., 2004. Fetal programming: Prenatal testosterone 
excess leads to fetal growth retardation and postnatal catch-up growth in sheep. 
Endocrinology 145 (2), 790–798. https://doi.org/10.1210/en.2003-0478. 

Mayer, C., Joseph, K.S., 2013. Fetal growth: A review of terms, concepts and issues 
relevant to obstetrics. Ultrasound in Obstetrics & Gynecology 41 (2), 136–145. 
https://doi.org/10.1002/uog.11204. 

Miller, G.W., Jones, D.P., 2014. The Nature of Nurture: Refining the Definition of the 
Exposome. Toxicological Sciences 137 (1), 1–2. https://doi.org/10.1093/toxsci/ 
kft251. 

Mitro, S.D., Liu, J., Jaacks, L.M., Fleisch, A.F., Williams, P.L., Knowler, W.C., 
Laferrère, B., Perng, W., Bray, G.A., Wallia, A., Hivert, M.-F., Oken, E., James- 
Todd, T.M., Temprosa, M., 2021. Per- and polyfluoroalkyl substance plasma 
concentrations and metabolomic markers of type 2 diabetes in the Diabetes 
Prevention Program trial. International Journal of Hygiene and Environmental 
Health 232, 113680. https://doi.org/10.1016/j.ijheh.2020.113680. 

Monte, M.J., Marin, J.J., Antelo, A., Vazquez-Tato, J., 2009. Bile acids: Chemistry, 
physiology, and pathophysiology. World Journal of Gastroenterology : WJG 15 (7), 
804–816. https://doi.org/10.3748/wjg.15.804. 

Morisaki, N., Kawachi, I., Oken, E., & Fujiwara, T. (2017). Social and anthropometric 
factors explaining racial/ethnical differences in birth weight in the United States. 
Scientific reports, 7(1), 1-8. https://doi: 10.1038/srep46657. 

Neerhof, M.G., Thaete, L.G., 2008. The Fetal Response to Chronic Placental Insufficiency. 
Seminars in Perinatology 32 (3), 201–205. https://doi.org/10.1053/j. 
semperi.2007.11.002. 

Ødegård, R.A., Vatten, L.J., Nilsen, S.T., Salvesen, K.Å., Austgulen, R., 2000. 
Preeclampsia and fetal growth. Obstetrics & Gynecology 96 (6), 950–955. https:// 
doi.org/10.1016/S0029-7844(00)01040-1. 

Papadopoulou, E., Haug, L.S., Sakhi, A.K., Andrusaityte, S., Basagaña, X., Brantsaeter, A. 
L., Casas, M., Fernández-Barrés, S., Grazuleviciene, R., Knutsen, H.K., Maitre, L., 
Meltzer, H.M., McEachan, R.R.C., Roumeliotaki, T., Slama, R., Vafeiadi, M., 
Wright, J., Vrijheid, M., Thomsen, C., Chatzi, L., 2019. Diet as a Source of Exposure 
to Environmental Contaminants for Pregnant Women and Children from Six 
European Countries. Environmental Health Perspectives 127 (10), 107005. https:// 
doi.org/10.1289/EHP5324. 

Patterson, R.A., Horsley, E.T.M., Leake, D.S., 2003. Prooxidant and antioxidant 
properties of human serum ultrafiltrates toward LDL: Important role of uric acid. 
Journal of Lipid Research 44 (3), 512–521. https://doi.org/10.1194/jlr.M200407- 
JLR200. 

Paules, C., Youssef, L., Miranda, J., Crovetto, F., Estanyol, J.M., Fernandez, G., Crispi, F., 
Gratacós, E., 2020. Maternal proteomic profiling reveals alterations in lipid 
metabolism in late-onset fetal growth restriction. Scientific Reports 10 (1), 21033. 
https://doi.org/10.1038/s41598-020-78207-3. 

Pearl, J., 2014. Interpretation and identification of causal mediation. Psychological 
methods 19 (4), 459–481. 

Raz, Y., Lavie, A., Vered, Y., Goldiner, I., Skornick-Rapaport, A., Landsberg Asher, Y., 
Maslovitz, S., Levin, I., Lessing, J.B., Kuperminc, M.J., Rimon, E., 2015. Severe 
intrahepatic cholestasis of pregnancy is a risk factor for preeclampsia in singleton 
and twin pregnancies. American Journal of Obstetrics and Gynecology 213 (3), 395. 
e1–395.e8. https://doi.org/10.1016/j.ajog.2015.05.011. 

Risnes, K.R., Vatten, L.J., Baker, J.L., Jameson, K., Sovio, U., Kajantie, E., Osler, M., 
Morley, R., Jokela, M., Painter, R.C., Sundh, V., Jacobsen, G.W., Eriksson, J.G., 
Sørensen, T.I.A., Bracken, M.B., 2011. Birthweight and mortality in adulthood: A 
systematic review and meta-analysis. International Journal of Epidemiology 40 (3), 
647–661. https://doi.org/10.1093/ije/dyq267. 

Ruggles, S., Flood, S., Foster, S., Goeken, R., Pacas, J., Schouweiler, M.& Sobek, M. 
IPUMS USA: Version 11.0 . Minneapolis, MN: IPUMS, 2021. https://doi.org/ 
10.18128/D010.V11.0. 

Ryu, A., Cho, N.J., Kim, Y.S., Lee, E.Y., 2019. Predictive value of serum uric acid levels 
for adverse perinatal outcomes in preeclampsia. Medicine 98 (18), e15462. https:// 
doi.org/10.1097/MD.0000000000015462. 

Salcedo-Bellido, I., Martínez-Galiano, J.M., Olmedo-Requena, R., Mozas-Moreno, J., 
Bueno-Cavanillas, A., Jimenez-Moleon, J.J., Delgado-Rodríguez, M., 2017. 
Association between Vitamin Intake during Pregnancy and Risk of Small for 
Gestational Age. Nutrients 9 (12), 1277. https://doi.org/10.3390/nu9121277. 

Salihovic, S., Fall, T., Ganna, A., Broeckling, C.D., Prenni, J.E., Hyötyläinen, T., 
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